SH-V/Com. Sc.-502-C-12/19

B.Sc. 5th Semester (Honours) Examination, 2019-20 **COMPUTER SCIENCE**

Course ID : 51512

Course Title: Theory of Computation

Time: 2 Hours

The figures in the right hand side margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

- 1. Answer any five questions:
 - (a) Define *dfa* and *nfa*.
 - (b) What is regular grammar?
 - (c) What is simple grammar? How does it differ from a regular grammar?
 - (d) Define ambiguous grammar. Give example.
 - (e) What is λ -production? When a variable is called nullable?
 - (f) Define CNF of a context free grammar.
 - (g) State pumping lemma for context free languages.
 - (h) Define computable function.
- 2. Answer *any four* questions:
 - (a) Prove $1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$ by method of induction. What is meant by a language? 4+1=5
 - (b) Find all strings of length less than or equal to 4 from $L = a(a + b)^*b$. Find dfa for the following languages on $\Sigma = \{a, b\}$
 - (i) $L = \{w: |w| \mod 3 \neq 0\}$
 - (ii) $L = \{w: n_a(w) \mod 4 > 1\}$ 1+2+2=5
 - (c) Draw an *nfa* for $L = (a + b)^* abb$. Then find a *dfa* from it which accepts L. 1+4=5
 - (d) Prove that $L = \{a^n b^n : n \ge 0\}$ is not a regular language. If L_1 and L_2 are regular languages then prove that $L_1 \cup L_2$ is a regular language. 4+1=5
 - (e) Find a regular expression for
 - (i) $L = \{w \in \{0, 1\}^*: w \text{ has exactly one pair of consecutive zeroes.} \}$
 - (ii) All string not ending in 01.

Find a context free grammar for $L = \{ww^R : w \in \{a, b\}^*\}$. 2+3=5

(f) Design a *pda* for $L = \{a^n b^n : n > 0\}$. Write difference between *dpda* and *npda*. 4+1=5

51512/16525

 $2 \times 5 = 10$

5×4=20

Full Marks: 40

Course Code : SH/CSC-502-C-12

- 3. Answer *any one* question:
 - (a) State Arden's theorem. Find a regular expression for the *dfa* given below.

Draw *nfa* for *Q* and $\{\lambda\}$.

2+6+2=10

(b) (i) Design a Turing machine for the following language.

 $L = \{a^n b^n c^n : n > 0\}$

(ii) Design a Turing machine that will compute f(x) = 3x where x is a +ve integer represented in unary.