B.Sc. 5th Semester (Honours) Examination, 2019-20 COMPUTER SCIENCE

Course ID : 51512
Course Code : SH/CSC-502-C-12
Course Title: Theory of Computation
Time: 2 Hours
Full Marks: 40
The figures in the right hand side margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five questions:
(a) Define $d f a$ and $n f a$.
(b) What is regular grammar?
(c) What is simple grammar? How does it differ from a regular grammar?
(d) Define ambiguous grammar. Give example.
(e) What is λ-production? When a variable is called nullable?
(f) Define CNF of a context free grammar.
(g) State pumping lemma for context free languages.
(h) Define computable function.
2. Answer any four questions:
$5 \times 4=20$
(a) Prove $1+2+3+\cdots+n=\frac{n(n+1)}{2}$ by method of induction. What is meant by a language?
$4+1=5$
(b) Find all strings of length less than or equal to 4 from $L=a(a+b)^{*} b$. Find $d f a$ for the following languages on $\sum=\{a, b\}$
(i) $L=\{w:|w| \bmod 3 \neq 0\}$
(ii) $L=\left\{w: n_{a}(w) \bmod 4>1\right\}$
$1+2+2=5$
(c) Draw an $n f a$ for $L=(a+b)^{*} a b b$. Then find a $d f a$ from it which accepts L.
$1+4=5$
(d) Prove that $L=\left\{a^{n} b^{n}: n \geq 0\right\}$ is not a regular language. If L_{1} and L_{2} are regular languages then prove that $L_{1} \cup L_{2}$ is a regular language.
$4+1=5$
(e) Find a regular expression for
(i) $L=\left\{w \in\{0,1\}^{*}: w\right.$ has exactly one pair of consecutive zeroes.
(ii) All string not ending in 01.

Find a context free grammar for $L=\left\{w w^{R}: w \in\{a, b\}^{*}\right\} . \quad 2+3=5$
(f) Design a $p d a$ for $L=\left\{a^{n} b^{n}: n>0\right\}$. Write difference between $d p d a$ and $n p d a$. 4+1=5
3. Answer any one question:
(a) State Arden's theorem. Find a regular expression for the $d f a$ given below.

Draw $n f a$ for Q and $\{\lambda\}$.
(b) (i) Design a Turing machine for the following language.

$$
L=\left\{a^{n} b^{n} c^{n}: n>0\right\}
$$

(ii) Design a Turing machine that will compute $f(x)=3 x$ where x is a $+v e$ integer represented in unary.

